Lecture 2:
Arrays

Arrays (or matrices) hold a collection of different values
at the same time. Individual elements are accessed by
subscripting the array.

A 15 element array can be visualised as:

(%)

T T
12
l l

T T T
\ \ \
| 13 | 14 | 15
I I I

And a 5 x 3 array as:

2,1, 2,2, 23
]
| |
3113233
L - — - J_ _— L - __
| |
4,1, 4,2 , 4,3
I S B
| |
5115253
1 1

Dimension 1

Every array has a type and each element holds a value
of that type.

27

Array Terminology I

Examples of declarations:

REAL, DIMENSION(15) 0 X
REAL, DIMENSION(1:5,1:3) :: Y, Z

The above are explicit-shape arrays.
Terminology:

O rank — number of dimensions.
Rank of X is 1; rank of Y and Z is 2.

O bounds — upper and lower limits of indices.

Bounds of X are 1 and 15; Bound of Y and Z are 1
and 5 and 1 and 3.

O extent — number of elements in dimension;
Extent of X is 15; extents of Y and Z are 5 and 3.

O size — total number of elements.
Size of X, Y and Z is 15.

O shape — rank and extents;
Shape of X is 15; shape of Y and Z is 5,3.

O conformable — same shape.
Y and Z are conformable.

28

Declarations I

Literals and constants can be used in array declarations,

REAL, DIMENSION(100) :: R

REAL, DIMENSION(1:10,1:10) :: S

REAL :: T(10,10)
REAL, DIMENSION(-10:-1) 0 X

INTEGER, PARAMETER :: 1da = 5
REAL, DIMENSION(O:1da-1) Y

REAL, DIMENSION(1+lda*1lda,10) :: Z
O default lower bound is 1,
O bounds can begin and end anywhere,

O arrays can be zero-sized (if 1da = 0),

29

Visualisation of ArraysI

REAL, DIMENSION(15)

REAL, DIMENSION(-4:0,0:2)
REAL, DIMENSION(5,3)
REAL, DIMENSION(0:4,0:2)

OaQw>

Individual array elements are denoted by subscripting the
array name by an INTEGER, for example, A(7) 7" element
of A, or C(3,2), 3 elements down, 2 across.

T T
\ \
A1) | |
I I

T T
\ \
| | A(15)
I I

B(-4,0) g
C(1,1) [
D(0,0)

B(0,0) I
C(5,1) .
D(4,0)

B(-4,2)
C(1,3)
D(0,2)

B(0,2)
C(5,3)
D(4,2)

30

Array Conformance I

Arrays or sub-arrays must conform with all other objects
in an expression:

O a scalar conforms to an array of any shape with the
same value for every element:

C=1.0 ! is valid

O two array references must conform in their shape.
Using the declarations from before:

Val id

I nval i d

A and B have the same size but have different shapes
so cannot be directly equated.

31

Array Element Ordering I

Organisation in memory:

O Fortran 90 does not specify anything about how
arrays should be located in memory. It has no
storage association.

O Fortran 90 does define an array element ordering for
certain situations which is of column major form,

The array is conceptually ordered as:

first elt A A

T T
| |

7 AN

C(1,1) I A N T C(1,3)

1 1
| |
| |

AR I N R
| |
| |
| |

L — J_ |- L - —
| |
l l
| |

S A N S -

C(5.1) 1 1 C(5.3)

l l
N7 N7

last elt

c(1,1),c(2,1),..,Cc(5,1),Cc(1,2),C(2,2),..,C(5,3)

32

Array Syntax I

Can reference:

O whole arrays

¢ A =0.0
sets whole array A to zero.

¢ B=C+D
adds C and D then assigns result to B.

O elements

o A(1) = 0.0
sets one element to zero,

¢ B(0,0) = A(3) + C(5,1)
sets an element of B to the sum of two other

elements.
O array sections

¢ A(2:4) = 0.0
sets A(2), A(3) and A(4) to zero,

¢ B(-1:0,1:2) = C(1:2,2:3) + 1.0

adds one to the subsection of C and assigns to
the subsection of B.

33

Whole Array Expressionsl

Arrays can be treated like a single variable in that:

O can use intrinsic operators between conformable ar-
rays (or sections),

B =C * D — Bxx2

this is equivalent to concurrent execution of:

B(-4,0) = C(1,1)*D(0,0)-B(-4,0)**2 ! in
B(-3,0) = C(2,1)*D(1,0)-B(-3,0)**2 ! in

B(-4,1)

C(1,2)*D(0,1)-B(-4,1)**2 ! in ||

B(0,2) C(5,3)*D(4,2)-B(0,2)**x2 ! in ||
O elemental intrinsic functions can be used,

B = SIN(C)+C0S(D)

the function is applied element by element.

34

:: P

Array Sections — Visualisation

REAL, DIMENSION(1:6,1:8)

Given,

| | | | | | | | | |
I\,\,\\,\\,\,\ \,\,\\,\\,\,\l
| | | | | | | | | |
| | | | | malul | | | | | \nh_l
(o] (o]
Il KIOXIXE g B
I\%\Jf\\”\\f\%\l o \,\,\\,\\,\,\l o B a
| | | | | | | | | | n
c ﬂmm
(@)] — ©
- — ’V
| | | | | $ 2e
L] o) e o
| | | | | — 6a
ISR T o =2
F—4+-—-d-—-l—-—-F -+ - o 2
| | | | | —~~ | | | | | IAM_\ W P1
- _L_1_] T L 1l _J_ _1__L_1_4 0o @)
XK] e L =
2T N I R P o R < T
00, | | W.\ | | | [[— Y— H <+
O F g e I
000\\T\+\1 F-+-d--l--F-+-9 ._m ‘Inalh
XX 1 SRR 0 o
r LN] LN
% —
o/
w (a TRy a W
o O
O

(1:3,1:4) and
(2:5,7) are not.
35

O P(2:5,7) is a 1D section (scalar in dimension 2)
whereas P(2:5,7:7) is a 2D section.

subscript-triplets specify sub-arrays. The general form

IS:

Array Sections I

[< bound1 >]:[< bound2 >][:< stride >]

The section starts at < bound1 > and ends at or before
< bound2 >. < stride > is the increment by which the

locations are selected.

< boundl >, < bound2 > and < stride > must all be

scalar integer expressions. Thus

AC:) !
A(3:9) !
A(3:9:1) !
A(m:n) !
A(m:n:k) !
A(8:3:-1) !
A(8:3) !
A(m:) !
A(:n) !
A(C::2) !
A(m:m) !
A(m) !

the whole array

A(m) to A(n)
as above

A(m) to A(n)
A(m) to A(n)
A(8) to A(3)
A(8) to A(3)
from A(m) to
from default
from default

in steps of 1

in steps of k

in steps of -1

step 1 => Zero size
default UPB

LWB to A(n)

LWB to UPB step 2

1 element section
scalar element - not a section

are all valid sections.

36

Array Inquiry IntrinsicsI

These are often useful in procedures, consider the dec-
laration:

REAL, DIMENSION(-10:10,23,14:28) :: A
O LBOUND(SOURCE[,DIM]) — lower bounds of an array (or
bound in an optionally specified dimension).
© LBOUND(A) is (/-10,1,14/) (array);
¢ LBOUND(A,1) is -10 (scalar).
O UBOUND(SOURCE[,DIM]) — upper bounds of an array
(or bound in an optionally specified dimension).
O SHAPE(SOURCE) — shape of an array,
¢ SHAPE(A) is (/21,23,15/) (array);
© SHAPE((/4/)) is (/1/) (array).

O SIZE(SOURCE[,DIM]) — total number of array elements
(in an optionally specified dimension),

o SIZE(A,1) is 21;
o SIZE(A) is 7245.

O ALLOCATED(SOURCE) — array allocation status:

37

Vector-valued Subscriptsl

A 1D array can be used to subscript an array in a di-
mension. Consider:

(/13438312,10/)
(/1,2,2/)

INTEGER, DIMENSION(5) :: V
INTEGER, DIMENSION(3) :: W

O A(V) is A(1), A(4), A(8), A(12), and A(10).

Vv
T T 1
! P !
Ao 0 e v N
1 4 8 10 12

O the following are valid assignments:

ACV) =

3.5
C(1:3,1) =

A(W)

O it would be invalid to assign values to A(W) as A(2)
is referred to twice.

O only 1D vector subscripts are allowed, for example,

A(1) = suM(C(V,W))

38

Array Constructors I

Used to give arrays or sections of arrays specific values.
For example,

IMPLICIT NONE

INTEGER |
INTEGER, DIMENSION(10) :: ints
CHARACTER(len=5), DIMENSION(3) :: colours
REAL, DIMENSION(4) : heights

heights = (/5.10, 5.6, 4.0, 3. 6/)

colours = (/’RED ’,’GREEN’,’BLUE ’/)

! note padding so strings are 5 chars

ints = (/ 100, (i, i=1,8), 100 /)
O constructors and array sections must conform.
O must be 1D.

O for higher rank arrays use RESHAPE intrinsic.

O (i, i=1,8) is an implied D0 and is 1,2,..,8, it is pos-
sible to specify a stride.

39

T he RESHAPE Intrinsic FunctionI

RESHAPE is a general intrinsic function which delivers an
array of a specific shape:

RESHAPE (SOURCE, SHAPE)
For example,
A = RESHAPE((/1,2,3,4/),(/2,2/))
A is filled in array element order and looks like:
1 3
2 4

Visualisation,

T T T 1:3
152!3!4 >--T;-

RESHAPE

40

Allocatable Arrays I

Fortran 90 allows arrays to be created on-the-fly; these
are known as deferred-shape arrays:

O Declaration:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages I 1D
REAL, DIMENSION(:,:), ALLOCATABLE :: speed I 2D

Note ALLOCATABLE attribute and fixed rank.
O Allocation:

READ*, isize
ALLOCATE(ages(isize), STAT=ierr)
IF (ierr /= 0) PRINT*, "ages : Allocation failed"

ALLOCATE(speed(0:isize-1,10) ,STAT=ierr)
IF (ierr /= 0) PRINT*, "speed : Allocation failed"

O the optional STAT= field reports on the success of
the storage request. If the INTEGER variable ierr is
zero the request was successful otherwise it failed.

41

Deallocating Arrays I

Heap storage can be reclaimed using the DEALLOCATE
statement:

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr)

O it is an error to deallocate an array without the
ALLOCATE attribute or one that has not been previ-
ously allocated space,

O there is an intrinsic function, ALLOCATED, which re-
turns a scalar LOGICAL values reporting on the status
of an array,

O the STAT= field is optional but its use is recom-
mended,

O if a procedure containing an allocatable array which
does not have the SAVE attribute is exited without
the array being DEALLOCATEd then this storage be-
comes inaccessible.

42

Masked Array Assignment — Where Statementl

This is achieved using WHERE:
WHERE (I .NE. 0) A = B/I

the LHS of the assignment must be array valued and
the mask, (the logical expression,) and the RHS of the
assignment must all conform;

For example, if

and,

|
|
—
oN
N | O
~—

then

= (22)

Only the indicated elements, corresponding to the non-
zero elements of I, have been assigned to.

43

Where Construct I

O there is a block form of masked assignment:

WHERE(A > 0.0)

B = LOG(A)

C = SQRT(A)
ELSEWHERE

B =0.0"! C is NOT changed
ENDWHERE

O the mask must conform to the RHS of each assign-
ment; A, B and C must conform;

O WHERE ... END WHERE is not a control construct and
cannot currently be nested:

O the execution sequence is as follows: evaluate the
mask, execute the WHERE block (in full) then execute
the ELSEWHERE block;

O the separate assignment statements are executed
sequentially but the individual elemental assignments
within each statement are (conceptually) executed
in parallel.

44

Dummy Array Argumentsl

There are two main types of dummy array argument:
O explicit-shape — all bounds specified;

REAL, DIMENSION(8,8), INTENT(IN) :: expl_shape

The actual argument that becomes associated with
an explicit-shape dummy must conform in size and
shape.

O assumed-shape — no bounds specified, all inherited
from the actual argument;

REAL, DIMENSION(:,:), INTENT(IN) :: ass_shape

An explicit interface must be provided.

O dummy arguments cannot be (unallocated) ALLOCAT-
ABLE arrays.

45

Assumed-shape Arrays I

Should declare dummy arrays as assumed-shape arrays:

PROGRAM Main
IMPLICIT NONE
REAL, DIMENSION(40) 0 X
REAL, DIMENSION(40,40) :: Y

CALL gimlet(X,Y)
CALL gimlet(X(1:39:2),Y(2:4,4:4))
CALL gimlet(X(1:39:2),Y(2:4,4)) ! invalid
CONTAINS
SUBROUTINE gimlet(a,b)
REAL, INTENT(IN) :: a(:), b(:,:)

END SUBROUTINE gimlet
END PROGRAM

Note:

O the actual arguments cannot be a vector subscripted
array,

O the actual argument cannot be an assumed-size ar-
ray.

O in the procedure, bounds begin at 1.

46

Automatic Arrays I

Other arrays can depend on dummy arguments, these
are called automatic arrays and:

O their size is determined by dummy arguments,

O they cannot have the SAVE attribute (or be initialised);

Consider,

PROGRAM Main
IMPLICIT NONE
INTEGER :: IX, IY
CALL une_bus_riot(IX,2,3)
CALL une_bus_riot(IY,7,2)
CONTAINS
SUBROUTINE une_bus_riot(A,M,N)
INTEGER, INTENT(IN) :: M, N
INTEGER, INTENT(INOUT) :: A(:,:)
REAL :: A1(M,N) I auto
REAL :: A2(SIZE(A,1),SIZE(A,2)) ! auto

END SUBROUTINE
END PROGRAM

The SIZE intrinsic or dummy arguments can be used to
declare automatic arrays. A1 and A2 may have different

sizes for different calls.
a7

Random Number Intrinsic I

O RANDOM_NUMBER(HARVEST) will return a scalar (or array

of) pseudorandom number(s) in the range 0 < z <
1.

For example,

REAL :: HARVEST
REAL, DIMENSION(10,10) :: HARVEYS
CALL RANDOM_NUMBER (HARVEST)
CALL RANDOM_NUMBER (HARVEYS)

O RANDOM SEED([SIZE=< int >]) finds the size of the
seed.

O RANDOM SEED([PUT=< array>]) seeds the random num-
ber generator.

CALL RANDOM_SEED(SIZE=isze)
CALL RANDOM_SEED(PUT=IArr(1l:isze))

48

Vector and Matrix Multiply IntrinsicsI

There are two types of intrinsic matrix multiplication:

O DOT_PRODUCT(VEC1, VEC2) — inner (dot) product of
two rank 1 arrays.

For example,
DP = DOT_PRODUCT(A,B)
IS equivalent to:
DP = A(1)*B(1) + A(2)*B(2) + ...

For LOGICAL arrays, the corresponding operation is
a logical .AND..

DP = LA(1) .AND. LB(1) .OR. &
LA(2) .AND. LB(2) .OR.

O MATMUL(MAT1, MAT2) — ‘traditional’ matrix-matrix mul-
tiplication:

¢ if MAT1 has shape (n,m) and MAT2 shape (m,k)
then the result has shape (n, k);

¢ if MAT1 has shape (m) and MAT2 shape (m, k) then
the result has shape (k);

¢ if MAT1 has shape (n,m) and MAT2 shape (m) then
the result has shape (n);

For LOGICAL arrays, the corresponding operation is
a logical .AND..

49

Array Location IntrinsicsI

There are two intrinsics in this class:

O MINLOC(SOURCE[,MASK])— Location of a minimum value
in an array under an optional mask.

O MAXLOC(SOURCE[,MASK])— Location of a maximum value
in an array under an optional mask.

A 1D example,
MAXLOC(X) = (/6/)

71 9/-2| 4] 8/10] 2| 7/10] 2| 1

A

A 2D example. If

O -1 1 6 -4
Array=| 1 -2 5 4 -3
3 8 3 =7 O

then
O MINLOC(Array) is (/3,4/)
O MAXLOC(Array,Array.LE.7) is (/1,4/)

O MAXLOC(MAXLOC(Array,Array.LE.7)) is (/2/) (array val-
ued).

50

Array Reduction Intrinsicsl

O PRODUCT (SOURCE[,DIM][,MASK])— product of array ele-

ments (in an optionally specified dimension under
an optional mask);

O SUM(SOURCE[,DIM][,MASK])— sum of array elements (in

an optionally specified dimension under an optional
mask).

The following 1D example demonstrates how the 11
values are reduced to just one by the SUM reduction:

SUMW = 58

7| 9/-2| 4| 8(10] 2| 7|10] 2| 1
FNF\N+\+| [+ [+/+/+ ¢

= 58

Consider this 2D example, if

(135
A_(246>

O PRODUCT(A) is 720
O PRODUCT(A,DIM=1) is (/2, 12, 30/)
O PRODUCT(A,DIM=2) is (/15, 48/)

51

Array Reduction Intrinsics (Cont’d)I

These functions operate on arrays and produce a result
with less dimensions that the source object:

O ALL(MASK[,DIM])— .TRUE. if all values are .TRUE., (in
an optionally specified dimension);

O ANY(MASK[,DIM])— .TRUE. if any values are .TRUE., (in
an optionally specified dimension);

O COUNT(MASK[,DIM])— number of .TRUE. elements in
an array, (in an optionally specified dimension);

O MAXVAL (SOURCE[,DIM][,MASK])— maximum Value in an
array (in an optionally specified dimension under an
optional mask);

O MINVAL(SOURCE[,DIM][,MASK])— minimum value in an
array (in an optionally specified dimension under an
optional mask);

If DIM is absent or the source array is of rank 1 then the
result is scalar, otherwise the result is of rank n — 1.

52

